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Random multipole errors are introduced if the poles are improperly excited or 

assembly errors which displace poles are introduced.  If one can identify these 

errors, one can predict the multipole content of the magnet.  The means for 

calculating these errors are summarized in two papers published by Klaus 

Halbach.  The first paper describes the derivation of the relationships, the 

second computes and tabulates the coefficients used to calculate the multipole 

errors from the perturbations derived in the first paper.  

[1] Halbach, K., FIRST ORDER PERTURBATION EFFECTS IN IRON-DOMINATED 

TWO-DIMENSIONAL SYMMETRICAL MULTIPOLES, “Nuclear Instruments and 

Methods”, Volume 74 (1969) No. 1, pp. 147-164.   

 

[2] Halbach, K., and R. Yourd, TABLES AND GRAPHS OF FIRST ORDER 

PERTURBATION EFFECTS IN IRON-DOMINATED TWO-DIMENSIONAL 

SYMMETRICAL MULTIPOLES, LBNL Internal Report, UCRL-18916, UC-34 Physics, TID 

4500 (54thEd.), May 1969.  



Effect of Mechanical Fabrication Errors 
on Error Multipole Content 
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In the previous lecture, we showed that the field distribution 
in a magnet can be characterized by a function of the 
complex variable, z.  In particular;  
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Random Multipole Errors Due to Pole 
Excitation and Pole Placement Errors 
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Random Multipole Errors Due to Pole 
Excitation and Pole Placement Errors 
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Table with errors 
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n Excitation (i) Radial (i) Azimuthal Rotational 

1 1.99E-01 -4.25E-01 7.46E-02 1.76E-01 

2 2.50E-01 -5.16E-01 2.14E-01 5.00E-01 

3 1.57E-01 -2.88E-01 2.88E-01 6.60E-01 

4 0 6.76E-02 2.31E-01 5.00E-01 

5 -2.05E-02 1.08E-01 1.08E-01 1.91E-01 

6 0 4.45E-02 2.87E-02 0 

7 -1.61E-02 -1.04E-02 1.04E-02 -3.06E-02 

8 0 1.28E-02 1.56E-02 0 

9 -1.90E-03 1.25E-02 1.25E-02 7.53E-03 

10 0 6.37E-03 5.81E-03 0 

11 3.15E-03 -2.44E-03 2.44E-03 -3.62E-03 

12 0 2.66E-03 2.79E-03 0 

13 -2.45E-04 2.27E-03 2.27E-03 9.28E-04 

14 0 1.26E-03 1.23E-03 0 

15 6.69E-04 -5.55E-04 5.55E-04 -6.66E-04 

n Excitation (i) Radial (i) Azimuthal Rotational 

1 9.79E-02 -3.14E-01 5.09E-02 8.47E-02 

2 1.56E-01 -4.95E-01 1.71E-01 2.84E-01 

3 1.67E-01 -5.15E-01 3.03E-01 5.00E-01 

4 1.33E-01 -3.90E-01 3.90E-01 6.39E-01 

5 7.09E-02 -1.73E-01 3.97E-01 6.43E-01 

6 0 6.55E-02 3.18E-01 5.00E-01 

7 -1.34E-02 1.08E-01 1.95E-01 2.88E-01 

8 -1.07E-02 9.03E-02 9.03E-02 1.08E-01 

9 0 4.16E-02 2.51E-02 0 

10 9.13E-03 -1.93E-03 1.90E-03 -3.38E-02 

11 9.72E-03 -1.45E-02 5.49E-03 -2.05E-02 

12 0 1.05E-02 1.31E-02 0 

13 -1.01E-03 1.07E-02 1.36E-02 7.34E-03 

14 -1.18E-03 9.85E-03 9.85E-03 5.82E-03 

15 0 5.06E-03 4.56E-03 0 

Quadrupole Sextupole 
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Example 
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Suppose we construct a 35 mm radius quadrupole (N=2) whose first pole (=p/4) is 
radially offset by 1 mm.  What is the effect on the n=3 multipole error?   
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Evaluation at the Required 
Good Field Radius 
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Full Spectrum 
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Lesson to be learned… 
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The lesson from this sample calculation is not the detailed calculation of the 
multipole error, but the estimate of the mechanical assembly tolerances which 
must be met in order to achieve a required field quality.   
 
In general, the coefficient is <0.5.  Therefore in order to achieve a field error at the 
pole radius of 5 parts in 10000 (a typical multipole error tolerance), the following 
tolerance illustrated in the calculation must be maintained. 
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The Magnet Center 
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We note that all the multipole errors are 
introduced by mechanical assembly errors.  In 
particular, we look in detail at the dipole error 
term introduced by assembly errors.   
 
For the pure quadrupole field, the expression 
for the complex function is;    2

2 zCzF 

If the magnet center is shifted by an amount z, 

the expression becomes;     2
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Rewriting the expression as the sum of two fields;  
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Evaluating the quadrupole field at the pole radius, h;   
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Effect of a Pole Excitation Error on the 
Magnetic Center 
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The magnetic center is an important parameter for linear colliders. The 
requirement for the magnetic center for the ILC linac quadrupoles is 100mm. 
 

A sample calculation is made to compute the required pole excitation precision.    
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The Four Piece Magnet Yoke 
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• The ideal assembly satisfies the rotational 

symmetry requirements so that the only error 

multipoles are allowed multipoles, n=6, 10, 14... 
 

• However, each segment can be assembled with 

errors with three kinematic motions, x, y and  

(rotation). 
 

• Thus, combining the possible errors of the three 

segments with respect to the datum segment, the 

core assembly can be assembled with errors with 

3x3x3=27 degrees of freedom.   
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The Two Piece Magnet Yoke 
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• This assembly has the advantage that the two 

core halves can be assembled with only three 

degrees of freedom for assembly errors.  Thus, 

assembly errors are more easily measured and 

controlled 



Two Piece Asymmetric Quadrupole 
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Two Piece Asymmetric Quadrupole 
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Two Piece Asymmetric Quadrupole 

0 

n Asymmetry 

1 -2.81E-01 

2 0 

3 -2.22E-01 

4 0 

5 -2.90E-02 

6 0 

7 -2.28E-02 

8 0 

9 2.69E-03 

10 0 

11 -4.45E-03 

12 0 

13 -3.46E-04 

14 0 

15 9.46E-04 

16 0 



Differences in Lengths of the 
Upper and Lower Halves 
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Differences in Lengths of the 
Upper and Lower Halves 

0 

n 
Different 
length (i) 

1 2.81E-01 

2 0 

3 -2.22E-01 

4 0 

5 2.90E-02 

6 0 

7 -2.28E-02 

8 0 

9 -2.69E-03 

10 0 

11 -4.45E-03 

12 0 

13 3.46E-04 

14 0 

15 9.46E-04 

16 0 



Two Piece Quadrupole Errors 
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Two Piece Quadrupole Errors 

n Asymmetry L (i) X (i) Y  Rot 

1 -2.81E-01 2.81E-01 0 0 2.49E-01 

2 0 0 0.302 -7.30E-01 0 

3 -2.22E-01 -2.22E-01 0 0 -9.33E-01 

4 0 0 -9.56E-02 -3.27E-01 0 

5 -2.90E-02 2.90E-02 0 0 -2.70E-01 

6 0 0 -4.06E-02 -6.29E-02 0 

7 -2.28E-02 -2.28E-02 0 0 -4.33E-02 

8 0 0 1.81E-02 2.20E-02 0 

9 2.69E-03 -2.69E-03 0 0 1.06E-02 

10 0 0 8.22E-03 9.01E-03 0 

11 -4.45E-03 -4.45E-03 0 0 5.12E-03 

12 0 0 -3.77E-03 3.94E-03 0 

13 -3.46E-04 3.46E-04 0 0 -1.31E-03 

14 0 0 -1.74E-03 -1.78E-03 0 

15 9.46E-04 9.46E-04 0 0 -9.41E-04 

16 0 0 8.14E-04 8.23E-04 0 



Examples: Alba SR-Quadrupoles 
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Gradient Uniformity 
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Magnetic Material Spacers 
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OC OI 
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Solutions 

30 

Magnetic Material Spacers 
with the same thickness 
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Gradient Uniformity 
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Magnetic Base 
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n reference iron feet iron feet + air space
iron feet + air space 

+ contact points

1 0 0 0 0

2 10000 10000 10000 10000

3 0 0 0 0

4 0.0 0.8 0.0 0.4

5 0 0 0 0

6 3 3 3 3

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 -1 -1 -1 -1

n reference iron feet iron feet + air space
iron feet + air space 

+ contact points

1 0 -1 0 0

2 0 0 0 0

3 10000 10000 10000 10000

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 -2 -2 -2 2

10 0 0 0 0

Quadrupole Sextupole 



Sextupole Trim Coils 
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n Excitation (i) 

1 9.79E-02 

2 1.56E-01 

3 1.67E-01 

4 1.33E-01 

5 7.09E-02 

6 0.00E+00 

7 -1.34E-02 

8 -1.07E-02 

9 0.00E+00 

10 9.13E-03 

11 9.72E-03 

12 0.00E+00 

13 -1.01E-03 

14 -1.18E-03 

15 0.00E+00 
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Vertical Corrector 
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n Bnx/B3y 

1 0.3391 

2 0 

3 0 

4 0 

5 -0.2456 

6 0 

7 0.0464 

8 0 

9 0 

10 0 

11 0.0337 

12 0 

13 -0.0035 

14 0 

15 0 



Horizontal Corrector 
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n Bny/B3y 

1 0.3916 

2 0 

3 -0.6680 

4 0 

5 0.2836 

6 0 

7 0.0536 

8 0 

9 0 

10 0 

11 -0.0389 

12 0 

13 -0.0040 

14 0 

15 0 



Skew Quadrupole Corrector 
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Skew Quadrupole Corrector 
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n Bnx/B3y 

1 0 

2 -0.3120 

3 0 

4 0.2660 

5 0 

6 0 

7 0 

8 -0.0214 

9 0 

10 -0.0183 

11 0 

12 0 

13 0 

14 0.0024 

15 0 



Sextupole Trim Coils 
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Fermilab Booster Corrector 
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• Vertical dipole 
 

• Horizontal dipole 
 

• Normal Quadrupole 
 

• Skew Quadrupole 
 

• Normal Sextupole 
 

• Skew Sextupole 



Fermilab Booster Corrector 
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Fermilab Booster Corrector 
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Fermilab Booster Corrector 
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Summary 
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• In many ways, this is one of the most important 
lectures.  It is important to understand the chapter on 
perturbations since successfully translating the 
performance of the mathematical design to the 
magnets manufactured and installed in a synchrotron 
requires that mechanical manufacturing and assembly 
errors translates into field errors which can threaten the 
performance of the synchrotron.   
 

• Understanding the impact of mechanical fabrication 
and assembly errors on the magnet performance and 
thus, the physics impacts of these errors, can provide 
the understanding so that mechanical tolerances can be 
properly assigned.   



Next… 
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• Magnet Excitation 
 

• Iron saturation effects 
 

• Coil  design 


